TECHNICAL SKILL AFFECTS POWER LOSSES IN ROWING
Hofmijster Mathijs, van Soest Knoek, de Koning Jos
(Institute for Fundamental and Clinical Human Movement Sciences, Netherlands)

INTRODUCTION
Technique is important in rowing. The athlete has to minimize energy loss and maximize power output (P_{rower}).
For steady state rowing the power equation is: $P_{rower} = P_{metabolic} \cdot e_{gross} = -(P_{drag} + P_{\Delta v} + P_{blade})$ [2], with $P_{metabolic}$ the metabolic power production and e_{gross} the gross efficiency. P_{drag} and $P_{\Delta v}$ describe power loss to shell drag. P_{drag} is the power loss that occurs if shell velocity would be constant. $P_{\Delta v}$ is the additional power loss resulting from velocity fluctuations. P_{blade} describes power loss at the blades during push off.

We investigated how the execution of the stroke is related to velocity efficiency ($e_{velocity} = 1 - P_{\Delta v}/P_{rower}$ [1]). The study was performed using a rowing ergometer. The ergometer was put on wheels, to allow it to move back and forth. It was coupled to a motor that dissipated power in a velocity-dependent way, similar to $P_{\Delta v}$ in on-water rowing.

The first aim of this study was to determine if the better performing athletes in a group of well-trained rowers have a higher $e_{velocity}$ in addition to the expected higher $\dot{V}O_{2max}$. The second aim was to investigate which kinetic technique variables are related to differences in $e_{velocity}$.

METHODS
22 Well-trained female rowers participated. All performed a 2000m time trial on the modified ergometer. Forces on the handle and foot stretcher (F_{handle} and $F_{stretcher}$) were recorded and $\dot{V}O_{2max}$ was determined; e_{gross} was determined separately. Timing of F_{handle} and $F_{stretcher}$ was described by rower induced impulse fluctuations (RIIF) of the ergometer, which were determined by calculating the time integral of the net force on the ergometer (i.e., $F_{handle} + F_{stretcher}$) for discrete parts of the rowing cycle. A stepwise regression analysis was performed using $\dot{V}O_{2max}$, $e_{velocity}$ and e_{gross} to predict 2000m time. Correlations were established between $e_{velocity}$ and RIIF values.

RESULTS AND DISCUSSION
Total explained variance for 2000m time was 78%; 14% was explained by $e_{velocity}$ ($P<.05$). Significant negative correlations were found between $e_{velocity}$ and RIIF for the complete cycle, for the phases just before and after the catch and for the recovery phase ($P<.01$), meaning that low RIIF will lead to high $e_{velocity}$. When $F_{handle} = -F_{stretcher}$, ergometer acceleration will be zero; RIIF will be zero and $e_{velocity}$ will be 1. Yet, the associated movement pattern is unlikely to allow optimal use of large muscle groups and P_{rower} would be low. The best technique will be a compromise between maximum P_{rower} and maximum $e_{velocity}$.

The timing of forces around the catch is important. High $F_{stretcher}$ not accompanied by similar F_{handle} should be avoided as it will lead to high RIIF. The rower’s C.O.M. velocity during the recovery phase should be kept to a minimum. After the catch the connection from hips to hands should be stiff to ensure an optimal transfer of $F_{stretcher}$ to the handle.

REFERENCES

Keywords: Efficiency, Rowing, Energetics of Exercise