A retrospective training and injury questionnaire (modified from Vleck and Garbutt, 1998) plus a UK version of the Life Stress Questionnaire for Recreational Runners (LESCA) questionnaire (modified from Petrie, 1992), were administered to 44 runners at a 10-km race and at their clubs, using structured interviews.

Complete data were received from 22 males and 22 females (mean ± SD age 36 ± 10 vs. 30 ± 10 yrs, p<0.02; mass, p<0.01; running experience 9.0 ± 8.5 vs. 6.5 ± 5.8 yrs, ns; 10 km time 42:47 ± 3:56 vs. 50:27 ± 7:34 min:ss, p<0.05; run training frequency 4.3 ± 2.3 vs. 4.1 ± 1.6 sessions in 1 wk; run training duration 4.9 ± 2.3 vs. 5.2 ± 2.6 hrs in one week, ns). Training was mainly directed at marathon and 12 marathon in males, and at 12 marathon and 10 km competition in females. Number of races planned for the year (7.7 ± 6.7 vs. 6.0 ± 6.3, ns), and combined total time spent training in the two lowest (impact) levels of a 5-point running intensity scale (2.9 ± 1.7 vs. 3.3 ± 1.9 hrs, ns) in one week, did not differ between genders. Females reported less run training time in intensities 3-5 within one week (2.7 ± 2.5 vs. 0.6 ± 0.7 hrs, p<0.05) than males.

No difference was noted between the genders in annual total (relationship, personal, sport training and career) stress frequency (28.9 ± 12.5 vs. 52.3± 16.7, ns) or relationship stress frequency (3.9 ± 3.3 vs. 4.1 ± 2.2, ns). However, males reported 2.3 times lower personal life stress frequency (10.9 ± 5.2 vs. 25.1 ± 9.3, p<0.01), 2.1 times lower sport training stress frequency (10.2 ± 7.2 vs. 17.1 ± 8.2, p<0.01), and 2 times lower career stress frequency (3.9 ± 2.7 vs. 6.1 ± 3.0, p<0.01) than females in the preceding year.

Ninety five percent of males and 68% of females recorded at least one self-assessed injury within the previous year. Sixty seven % of females and nineteen % of males reported it to recur. Injury occurrence correlated with overall running duration (r=0.4, p<0.01), intensity (r=0.4, p>0.01) and frequency (r=0.4, p<0.05) over one week- none of which differed with gender (ns).

No association was observed between ‘total life stress frequency’ and injury number (r=-0.3, ns). Weak correlations were observed between injury occurrence and increased personal stress frequency(r=-0.3, p>0.05), total career stress impact (r=-0.3, p<0.05), and total positive career stress impact (r=-0.5, p<0.05). Injury occurrence also correlated with positive career stress in females (r = – 0.6, p< 0.01), but not males (r= – 0.2, ns). Negative career stress impact negatively correlated with injury occurrence in females (r= -0.5, p<0.01) but not males (r=0.2, ns).

Our results suggest that stress frequency and stress impact on injury occurrence may differ between male and female recreational runners. However, the validity and reliability of the UK-LESCA requires investigation.